Skip to main content

Ripples in Spacetime - Govert Schilling ***

The only example of Govert Schilling's work I'd come across was his co-authorship of the quirky but ultimately unsatisfying Tweeting the Universe, so it was interesting to see a 'proper' book by him on the timely topic of gravitational waves.

I struggled a little with his writing style - it's very jerky, jumping from one topic to another in a kind of popular science stream of consciousness, but once I got used to it, there is no doubt that he gives a thorough non-technical picture not only of gravitational waves themselves, but all kinds of background material from Einstein's biography to aspects of general relativity that really don't have much to do with gravitational waves. In a sense this a curse of the topic - because gravitational wave astronomy is so new (at the time of writing fewer than 4 confirmed observations) there's a limit to how much there is to write about.

What Schilling does well is the science explanation. His description of gravitational waves themselves is the best I've seen anywhere, and he gives us plenty of information on the process that led to LIGO (the observatories that have made the discoveries). He's also good on the way the availability of gravitational wave data has the potential to expand the abilities of astronomers.

Less satisfactory is the history of science. I know popular science author John Gribbin would be squirming at the repeated use of 'Einstein's theory of general relativity' (it should be general theory of relativity), but this, for me, was a lesser error than some of the historical misinformation. We're told that Aristotle proposed the 'first model of the universe' - but there were plenty around earlier, such as Anaximander's, predating Aristotle by around 150 years. Equally we're told that 'Lipperhey' invented the telescope. Leaving aside his name being Lippershey, we know for certain he didn't as he attempted to patent it and failed because of prior claims (not to mention the Digges's work in the UK etc.) And, bizarrely, Schilling tells us that Einstein got the idea of a fixed speed for light from Michelson-Morley, rather than Maxwell.

Luckily there's only a relatively small part of the book that is history of science and, as mentioned, the parts explaining the science are much better. The description of Weber bars, the building of LIGO and the battles involved along the way are told much more engagingly in Black Hole Blues, but if it's just the science parts you want, this is a good one to go for.

Hardback:  


Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re