Skip to main content

David Sumpter - Four Way Interview

David Sumpter is professor of applied mathematics at the University of Uppsala, Sweden. Originally from London, he completed his doctorate in Mathematics at Manchester, and held academic research positions at both Oxford and Cambridge before heading to Sweden.

An incomplete list of the applied maths research projects on which David has worked include pigeons flying in pairs over Oxford; the traffic of Cuban leaf-cutter ants; fish swimming between coral in the Great Barrier Reef; and dancing honey bees from Sydney. In his spare time, he exploits his mathematical expertise in training a successful under-nines football team, Uppsala IF 2005. David is a Liverpool supporter with a lifelong affection for Dunfermline Athletic. You can follow David on Twitter - @soccermatics David's 2016 book is Soccermatics: mathematical adventures in the beautiful game.

Why maths?

Mathematicians often answer this question by saying maths is everywhere. I agree that maths can be found in everything, but saying that maths is ‘everywhere' can make it sound like some sort of mysterious force. When writing this book, my aim was to show that maths likes to get dirty. Maths isn’t just something abstract, but it is a set of tools for working things out and gaining insights. I want to put maths to work. In Soccermatics I show that maths can be applied to all aspects of football, from the randomness of goals, to passing networks, shot statistics, crowd movements and betting. The book takes my own experience as a researcher and applying it to football to get new answers in to the game.

Why this book?

I really enjoy watching football, playing football and training kids to play football. So when I got a chance to write a book combining my hobby and the research I do, I was thrilled. What can be better than analysing football data and communicating about that research to fanatical football fans? Nothing. When I started my research, I found that there was so much maths in football. All the symmetries, the structure and the strategy. These can all be analysed using the tools I had previously used to model biology. The book is takes the latest research in maths, stats and data visualisation and showing how it can be used in football. 

That said, the book is not just football. I squeeze in slime moulds, hunting lionesses, fish schools, bird flocks, ants, clapping undergraduates, wise and not so wise crowds, and cancerous tumours. The point is that maths can be used to give us the edge in understanding all sorts of different parts of the world.

What’s next?

I’m certainly not finished with football. It is so much fun. Football has fed back in to my ‘serious’ scientific research. And I am hoping to find out lots more things about the game.

What’s exciting you at the moment?

After I finished writing the book, I started thinking about whether the research I have done could have an impact on football clubs. I began a Twitter account doing mathematical analysis of games. In February, I was invited to the OptaPro forum to talk about what I had found out. I presented work from one of the chapters of the book about how to create tactical maps. This was a really interesting experience, to talk to football analysts and see how they saw mathematics contribution to their sport. The analysts were very open to new ideas and I hope to work more closely with football teams in the future. I am not signed by any club yet, but if a Premier League side would like to offer me a 3-year contract, I could be tempted…

Comments

Popular posts from this blog

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i